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Voluntary food fortification in the United States: potential
for excessive intakes
JE Sacco1, KW Dodd2, SI Kirkpatrick2 and V Tarasuk1

BACKGROUND: Historically, the voluntary addition of micronutrients to foods in the United States has been regarded as an
important means to lessen problems of nutrient inadequacy. With expanding voluntary food fortification and widespread
supplement use, it is important to understand how voluntary food fortification has an impact on the likelihood of excessive
usual intakes. Our objective was to investigate whether individuals in the United States with greater frequency of exposure to
micronutrients from voluntarily fortified foods (vFF) are more likely to have usual intakes approaching or exceeding the respective
tolerable upper intake levels (UL).
SUBJECTS/METHODS: The National Cancer Institute method was applied to data from the 2007–2008 National Health and Nutrition
Examination Survey (NHANES) to estimate the joint distribution of usual intake from both vFF and non-vFF sources for 12 nutrients and
determine the probability of consuming these nutrients from vFF on a given day. For each nutrient, we estimated the distribution of
usual intake from all food sources by quintile of probability of consuming vFF and compared the distributions with ULs.
RESULTS: An increased probability of consuming zinc, retinol, folic acid, selenium and copper from vFF was associated with a
greater risk of intakes above the UL among children. Among adults, increased probability of consuming calcium and iron from
vFF was associated with a greater risk of intakes above the UL among some age/sex groups.
CONCLUSION: The high nutrient exposures associated with vFF consumption in some population subgroups suggest a need
for more careful weighing of the risks and benefits of uncontrolled food fortification.
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INTRODUCTION
In the United States, fortification of any non-standardized food
with a vitamin or mineral is permitted at the discretion of the
manufacturer.1 Voluntary nutrient additions are guided by a policy
statement recommending that fortification be linked to evidence
of nutrient insufficiency in the population, and that nutrients
added be bioavailable, safe and stable.2 With few exceptions,
minimum and maximum permitted levels of addition are not
defined.3

Fortified foods contribute substantially to total nutrient intakes
in the United States and thus mitigate risks of nutrient inadequacy
in the population.4,5 However, the continued expansion of
voluntary fortification6 and evidence of micronutrient intakes
above tolerable upper intake levels (UL) among children4,5,7 raise
questions about the potential of food fortification to lead to
excessive intakes.8,9 Examinations of the effect of fortification
on the upper tails of usual-intake distributions have to date
been limited to single nutrients10–13 and specific population
subgroups,10 or they have failed to differentiate the effects
of voluntary fortification practices from mandatory programs
designed to address specific public health problems.4 Our
objective was to determine whether individuals with greater
frequency of exposure to nutrients from voluntarily fortified foods
(vFF) are more likely to have usual intakes (from all food sources)

approaching or exceeding the UL for those nutrients, considering
a broad spectrum of nutrients and age/sex groups.

SUBJECTS AND METHODS
Dataset and analytic sample
We analyzed data from the What We Eat in America (WWEIA) component
of the 2007–2008 NHANES, which contains dietary intake data from a
nationally representative sample of the civilian non-institutionalized
United States population. The automated multiple pass method was used
to collect up to two 24-h dietary recalls, the first in person and the second
via telephone 3–10 days later. Nutrient composition data was derived from
the Food and Nutrient Database for Dietary Studies (FNDDS), version 4.1.

The 2007–2008 WWEIA included 9762 individuals. We excluded those
providing incomplete or unreliable 24-h dietary recall data, pregnant and
breastfeeding women, children who consumed breast milk, children
o1years and participants with zero energy intake from food. Our analytic
sample is 14 728 recalls on a sample of 8709 individuals.

Voluntarily fortified foods are not tracked in the FNDDS, so voluntary
fortification was inferred from indications of nutrient addition under
conditions not captured by mandatory fortification programs (for example,
enrichment of flour). After excluding foods with a standard of identity for
enrichment or fortification, we systematically searched the FNDDS food
descriptions for terms indicating nutrient addition (for example, added,
vitamin or mineral, plus), including the variable ‘added vitamin B12’
(Figure 1). Vitamin B12, folate and vitamin E are the only nutrients in the
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FNDDS 4.1 for which added and naturally occurring sources are
differentiated, but the latter two additions cannot be assumed to
be voluntary as they are mandated in some foods and vitamin E is often
used as a preservative.

As breakfast cereals are widely fortified, cereals not identified as fortified
through our search criteria were cross-checked against ingredient lists on
the manufacturers’ websites, resulting in the identification of an additional
37 voluntarily fortified products.

We considered all but three nutrients with ULs, including zinc, iron,
calcium, folic acid, retinol, vitamin C, D, B6, E, phosphorous, copper,
selenium and choline. Niacin was not included because the UL applies only
to added sources, and these could not be reliably differentiated from
natural sources. Magnesium was not examined because the UL applies
only to intakes from supplements. Sodium was not examined because
most Americans exceed the UL for this nutrient; it is being targeted
for removal from foods, not addition.14

Statistical methods
Our analytic approach takes into account the fact that, for a given nutrient,
most individuals consume some amount from non-vFF sources every day,
whereas intake from vFF sources is episodic in nature. Drawing upon the
National Cancer Institute method established for estimating usual intake
distributions for dietary components consumed nearly every day by nearly
all persons,15 we employ an extension that allows bivariate modeling
of an episodically consumed dietary component and a non-episodically
consumed dietary component.16–19 This extended model is required
because only 2 days of intake data may not capture consumption of vFF,
even among individuals who sometimes consume vFF. Usual intake of a
nutrient from vFF is the probability of consuming any of the nutrients from

vFF on a given day multiplied by the usual amount of the nutrient from vFF
on days when vFF containing the nutrient are consumed. Distributions
reflect nutrient intake from both naturally occurring and added sources,
because the FNDDS does not readily permit differentiation of nutrient
content by source.

The bivariate modeling approach permits estimation of the distribution
of the usual amount from the combination of non-vFF and vFF sources,
conditional upon the probability of consuming the nutrient from vFF on a
given day (that is, the frequency of exposure) and adjustments
for nuisance effects, including recall collection method (in person or by
telephone) and day of the recall (weekend or weekday). After fitting the
bivariate model, a Monte Carlo procedure was used to simulate a
representative sample from the estimated joint distribution of the three
components of usual intake (usual intake from non-vFF, probability of
consuming from vFF on a given day and usual amount from vFF on
consumption days). The Monte Carlo sample was stratified by quintile of
probability of consuming the nutrient from vFF, and distributions of usual
intake from all food sources were estimated among each of the five
subsamples. The proportion exceeding the UL was estimated from each
resulting distribution. For nutrients and age/sex groups with any evidence
of excessive intakes, we also examined the 90th percentile of usual intake
within each quintile as a ratio of the UL, to gauge the proximity of the
upper tails of the distributions to the UL. In the presentation of results,
reference to ‘quintiles’ indicates the probability of consuming the nutrient
from vFF. No results are presented for vitamin E because the UL applies
only to added sources and consumption was too low to estimate usual
intakes.

We examined the relationship between vitamin and mineral supplement
use and vFF consumption by estimating the association between
probability of consuming energy from vFF (as a crude proxy for total vFF
consumed) and supplement use.

Balanced repeated replication was used to calculate standard errors that
take into account correlation among individuals sampled within the same
cluster. Survey weights were applied to adjust for differential sampling
of individuals. Given the complexity of the bivariate model, the SAS
procedure NLMIXED (version 9.2 (2008), SAS Institute, Cary, NC, USA) was
used to fit the model using an iterative algorithm. For 3% of data
combinations, the algorithm failed to converge on a unique solution. We
chose to suppress the results in these cases, rather than attempt to further
adjust the model specification and/or covariate choices until we could
obtain convergence. For most nutrient/life-stage combinations, the
estimation was quite stable for both the point estimate run and the
repeated runs used for balanced repeated replication s.e. estimation.

RESULTS
Almost half of the population consumed vFF on either recall day,
most commonly reporting breakfast cereals or beverages
(Supplementary Table 1). Within the lowest quintile, the mean
probability of consuming vFF ranged from close to zero for most
nutrients among adolescents and adults, to 36% for calcium and
phosphorus among quintiles of children 4–8y (data not shown).

Among children aged 1–3 years, prevalences of usual intakes
above the UL were observed across all quintiles for selenium,
retinol, copper and zinc, with prevalences 450% for zinc (Table 1,
Figure 2, Supplementary Figure 1). The prevalence of intakes of
these nutrients above the UL rose with the increasing probability
of consuming vFF (that is, across quintiles), but differences
between quintiles were not statistically significant at Po0.05.
Prevalences of usual intakes exceeding the UL were also observed
among the upper quintiles for folic acid and the upper tails of the
distributions of usual vitamin C and calcium intake among
1–3-year olds in the fifth quintile were in close proximity to the
UL (vitamin C: 0.6%4UL, s.e.¼ 0.8; calcium 0.3%4UL, s.e.¼ 0.3).
Intakes above the UL were less likely among 4–8-year olds, but
prevalences of intakes exceeding the UL were observed for zinc,
retinol and folic acid, particularly among the upper quintiles
(Table 1). Among children aged 1–3 and 4–8 years, prevalences
above the UL were negligible for iron, choline, phosphorous,
vitamin D and B6 (data not shown).

Small prevalences (o6%) of intakes above the UL were
observed for calcium, iron, zinc and folic acid among some adult

1) Is the food subject to enrichment
or mandatory fortification?

No

4) Is the food a name-brand ready-
to-eat breakfast cereal?

No

No

Yes

3) Does the food contain a value for
‘added vitamin B12’?

Yes 
(n=46)

Yes
5) Do ingredient lists (available on
manufacturers’ websites) identify
the presence of added nutrients?

(n=37)

2) Does the food code description
contain a keyword that identifies it

as a fortified food?

(i.e. Peanut butter with added
vitamins and minerals)

Yes
(n=204)

Figure 1. Identification of vFF in the FNDDS 4.1.
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and adolescent age/sex groups, primarily in the fifth quintile
(Figure 3, Supplementary Figure 2). For iron, there was a
significant difference in the prevalence of intakes above the UL
across quintiles among men aged 19–30 years; 4.3% of usual
intakes in the highest quintile fell above the UL (Figure 3). Among
those older than 8 years, prevalences of intakes above the UL were
negligible for selenium, copper, retinol, choline, phosphorous,
vitamin D, C and B6 (data not shown).

Tables 2 and 3 provide the 90th percentile of usual intake in
each quintile for nutrients with any evidence of intakes above the
UL as a ratio of the UL among age/sex groups older than 8 years,
indicating the proximity of the upper tails of these distributions to
the UL. The ratio of the 90th percentile of usual nutrient intake to
the UL exceeded 75% in the fifth quintile among adult men for
calcium and iron (Table 2), among boys and girls aged 9–13 years
for folic acid and among boys aged 9–13 years for zinc (Table 3).

In other words, 10% of the fifth quintile for these groups was
within 25% of the UL. For calcium, iron, zinc and folic acid, the
ratio of the 90th percentile of usual intake to the UL increased
systematically with increasing quintile for most adolescent and
adult age/sex groups, and in most cases, the differences between
each of the first four quintiles and the highest one were
significantly different (Po0.05).

Our evaluation of usual nutrient intakes was based on intakes
from food alone, but 37% of respondents consumed vitamin or
mineral supplements on either recall. Consumption on either day
ranged from 12% among 14–18-year old boys to 71% among
women aged 71þ years. Supplement consumption was asso-
ciated with an increased probability of energy consumption from
vFF among girls aged 9–13 years, women aged 31–50 and
71þ years, and among men aged 31–50, 51–70 and 71þ years
(Po0.05) (Supplementary Table 2).

DISCUSSION
This study is the first to examine the potential for high nutrient
intakes from vFF in the United States, while taking into account
differing levels of exposure within the population. We found that
vFF were widely consumed. For many nutrients, we estimated
substantial prevalences of usual intakes above the UL, particularly
among young children. Most of our comparisons of prevalences of
intakes exceeding the UL across quintiles of vFF exposure were
not significant at Po0.05, which may owe to the high variability in
the estimated upper tails of the distribution. However, the overall
direction of our results indicates higher prevalences among
children with higher exposure to vFF. This supports earlier
concerns about the potential of fortification to contribute to
excessive nutrient intakes among young children.8,9 Although the
proportion of usual intakes above the UL rarely exceeded
4% among older children, adolescents and adults, in many cases
the 90th percentile of usual nutrient intake was in close proximity
to the UL, implying that a small increment in usual intake could
shift an individual beyond this level. Further, in many cases, the
ratio of the 90th percentile of intake to the UL was significantly
higher among the highest quintile, suggesting an increased risk of
intakes approaching the UL with increased exposure to vFF.

In interpreting our results, it is important to note that intakes
approximating the ULs cannot be assumed to indicate risk of
adverse effects. By design, these values have been set at levels
with a high probability of being tolerated biologically.20 The risk
associated with usual intakes above ULs is not defined,21 in part
because of a lack of dose-response data and the unknown shape
of the risk probability function associated with high nutrient
intakes.22 Nonetheless, charting the upper tail of the distribution
of usual nutrient intake, including intakes both approaching and

Table 1. Proportion of usual nutrient intakes that exceeds the tolerable upper intake level (UL) for each quintile of probability of consuming
nutrients from voluntarily fortified food, among children aged p8 yearsa

Quintile Selenium Folic acid Retinol Copper Zinc

1–3 years 4–8 years 1–3 years 4–8 years 1–3 years 4–8 years 1–3 years 4–8 years 1–3 years 4–8 years

%4UL (s.e.)

Q1 4.5 (2.0) 0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 15.7 (3.6) 0.0 (0.0) 10.9 (3.0) 0.0 (0.0) 52.9 (9.7) 4.9 (2.3)
Q2 5.5 (1.6) 0.1 (0.1) 0.1 (0.1) 0.0 (0.0) 15.1 (3.3) 0.0 (0.0) 10.3 (2.2) 0.0 (0.0) 57.2 (7.2) 7.2 (2.0)
Q3 6.5 (1.7) 0.2 (0.1) 0.5 (0.4) 0.0 (0.1) 17.4 (3.8) 0.1 (0.1) 11.0 (2.2) 0.0 (0.0) 61.1 (6.5) 11.1 (1.9)
Q4 8.5 (3.0) 0.2 (0.2) 2.8 (1.5) 0.4 (0.5) 23.3 (5.6) 0.5 (0.3) 13.0 (2.7) 0.0 (0.0) 65.0 (6.1) 17.5 (4.1)
Q5 9.3 (4.8) 0.1 (0.3) 7.4 (4.2) 5.2 (3.9) 30.2 (11.4) 3.6 (1.9) 19.4 (4.4) 0.0 (0.0) 67.5 (7.7) 35.9 (14.0)

Abbreviation: UL, tolerable upper intake levels. aULs for 1–3 and 4–8 years, respectively are: selenium (mg/day) 90, 150; folic acid (mg/day) 300, 400; retinol
(mg/day) 600, 900; copper (mg/day) 1000, 3000; zinc (mg/day) 7, 12.
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Figure 2. Cumulative distribution function of usual retinol intake
among children aged 1–3 years, by quintile of probability of
consuming retinol from vFF.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

UL = 45 mg

Usual iron intake (mg)

P
er

ce
nt

ile
s

Quintile 1
Quintile 2
Quintile 3
Quintile 4
Quintile 5

Figure 3. Cumulative distribution function of usual iron intake
among men aged 19–30 years, by quintile of probability of
consuming iron from vFF.
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exceeding the UL, remains important given the expanding and
uncontrolled nature of nutrient additions.

The contribution of voluntary fortification to excessive micro-
nutrient intakes among children has long been a question of
interest.8,10,12,13 Arsenault et al.10 identified excessive zinc intakes
among children in the 1990s and noted the substantial
contribution of zinc-fortified foods to total intakes. Analyses of
NHANES 2003–2006 have revealed significantly higher median
usual folic acid intake among children and adults consuming
breakfast cereals, but did not establish the specific contribution of
breakfast cereals to excess intakes.11–13 Intakes of zinc, retinol,
folic acid, copper and selenium above the ULs among children
aged 1–8 years were described in NHANES 2001–2002,7 and
vitamin A, folic acid and zinc intakes above the ULs attributable to
mandatory and voluntary fortification were reported among
children in NHANES 2003–06.4 In pooling the results for children
aged 2–18 years, this analysis masked the heightened vulnerability

of young children revealed through our study. Some have argued
that reports of children with intakes above the UL should be little
cause for concern because the data on which the ULs for children
are based are particularly limited, and there is little documentation
of adverse effects.23 However, given how far above the UL, the
90th percentile of young children’s usual zinc intakes is, there is a
need to exercise caution in the absence of a better understanding
of the risks associated with intakes at this level. Our results
also suggest that there may be reasons to monitor the effects of
voluntary fortification on the nutrient intakes of older children
and adults.

An important difference between our analytic methods and
those applied by others to examine the risks associated with
voluntary fortification in the United States10–13 and elsewhere24–27

is the recognition of variation in the likelihood of consuming
nutrients from vFF within a population and within-/between-
person variation in the intake of nutrients from these foods.

Table 2. Values at the 90th percentile of the usual nutrient intake distributions as a ratio of the ULa, by quintile of probability of consuming
each nutrient from voluntarily fortified foods

Age/sex Calcium Iron

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

90th percentile/UL (s.e.)

Males (years)
9–13 0.43 (0.06) 0.47 (0.04) 0.49 (0.03)* 0.52 (0.03)* 0.63 (0.06) 0.44 (0.06)* 0.46 (0.04)* 0.50 (0.04)* 0.55 (0.04)* 0.68 (0.05)
14–18 0.54 (0.07) 0.57 (0.04) 0.58 (0.05) 0.59 (0.06) 0.59 (0.09) 0.40 (0.04) 0.42 (0.03) 0.45 (0.02) 0.49 (0.03) 0.56 (0.06)
19–30 0.53 (0.06)* 0.60 (0.04)* 0.67 (0.05)* 0.75 (0.05)* 0.91 (0.07) 0.43 (0.04)* 0.46 (0.03)* 0.49 (0.03)* 0.57 (0.04)* 0.80 (0.08)
31–50 0.50 (0.05)* 0.56 (0.04)* 0.60 (0.04)* 0.66 (0.04)* 0.77 (0.07) 0.43 (0.02)* 0.46 (0.02)* 0.50 (0.03)* 0.58 (0.04)* 0.79 (0.09)
51–70 0.61 (0.04)* 0.66 (0.04)* 0.71 (0.03)* 0.77 (0.04)* 0.86 (0.05) 0.44 (0.02)* 0.44 (0.02)* 0.48 (0.03)* 0.57 (0.03)* 0.78 (0.05)
71þ 0.48 (0.05)* 0.53 (0.04)* 0.58 (0.03)* 0.64 (0.04)* 0.75 (0.04) 0.35 (0.03)* 0.37 (0.02)* 0.44 (0.03)* 0.55 (0.03)* 0.73 (0.05)

Females (years)
9–13 0.29 (0.04)* 0.34 (0.04)* 0.37 (0.04)* 0.42 (0.05) 0.47 (0.06) 0.33 (0.02)* 0.38 (0.02)* 0.42 (0.02) 0.46 (0.02) 0.51 (0.04)
14–18 0.34 (0.05)* 0.39 (0.03)* 0.43 (0.03) 0.46 (0.03) 0.52 (0.04) 0.35 (0.04)* 0.38 (0.04)* 0.42 (0.04) 0.49 (0.05) 0.58 (0.07)
19–30 0.47 (0.06) 0.47 (0.04) 0.50 (0.04) 0.51 (0.03) 0.53 (0.06) 0.34 (0.04) 0.35 (0.02)* 0.37 (0.01) 0.40 (0.02) 0.46 (0.05)
31–50 0.41 (0.03)* 0.44 (0.02)* 0.47 (0.02)* 0.51 (0.02)* 0.65 (0.04) 0.36 (0.02)* 0.36 (0.01)* 0.39 (0.02)* 0.44 (0.02)* 0.59 (0.04)
51–70 0.51 (0.03)* 0.55 (0.03)* 0.58 (0.03)* 0.62 (0.03)* 0.72 (0.03) 0.31 (0.02)* 0.33 (0.01)* 0.38 (0.02)* 0.46 (0.02)* 0.57 (0.05)
71þ 0.41 (0.02)* 0.45 (0.02)* 0.51 (0.02)* 0.56 (0.02)* 0.67 (0.03) 0.26 (0.01)* 0.30 (0.01)* 0.35 (0.01)* 0.44 (0.02)* 0.53 (0.04)

Abbreviation: UL, tolerable upper intake levels. *indicates that the value is significantly different from quintile 5 (Q5) at Po0.05. aThe values at the 90th
percentile of the usual nutrient intake distributions as a ratio of the UL indicate the proximity of the upper tails of the distributions of usual intake to the UL.
For example, a value of 0.75 for a given quintile indicates that 10% of the quintile was within 25% of the UL.

Table 3. Values at the 90th percentile of the usual nutrient intake distributions as a ratio of the ULa, by quintile of probability of consuming each
nutrient from voluntarily fortified foods

Age/sex Folic acid Zinc

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

90th percentile/UL (s.e.)

Males (years)
9–13 0.30 (0.04)* 0.34 (0.04)* 0.42 (0.05)* 0.55 (0.05)* 0.93 (0.08) 0.64 (0.07) 0.64 (0.05) 0.67 (0.04) 0.71 (0.05) 0.86 (0.09)
14–18 0.33 (0.03)* 0.37 (0.02) 0.42 (0.03) 0.48 (0.04) 0.57 (0.09) 0.45 (0.05) 0.50 (0.04) 0.53 (0.04) 0.57 (0.05) 0.60 (0.08)
19–30 0.25 (0.04) 0.26 (0.03) 0.30 (0.04) 0.36 (0.06) 0.53 (0.14) 0.45 (0.04) 0.47 (0.02) 0.50 (0.03) 0.55 (0.05) 0.68 (0.10)
31–50 0.24 (0.02)* 0.24 (0.01)* 0.26 (0.01)* 0.32 (0.02)* 0.56 (0.05) 0.44 (0.04)* 0.46 (0.03)* 0.50 (0.03)* 0.54 (0.03)* 0.64 (0.04)
51–70 0.21 (0.02)* 0.21 (0.01)* 0.23 (0.01)* 0.31 (0.01)* 0.43 (0.03) 0.48 (0.04) 0.47 (0.03)* 0.49 (0.03) 0.51 (0.03) 0.57 (0.04)
71þ 0.13 (0.01)* 0.14 (0.01)* 0.19 (0.02)* 0.30 (0.03)* 0.51 (0.05) 0.34 (0.04)* 0.34 (0.03)* 0.37 (0.03)* 0.43 (0.04)* 0.58 (0.05)

Females (years)
9–13 0.28 (0.03)* 0.37 (0.05)* 0.47 (0.05)* 0.59 (0.06) 0.79 (0.13) 0.42 (0.04)* 0.48 (0.05)* 0.53 (0.05) 0.58 (0.06) 0.65 (0.07)
14–18 — — — — — 0.32 (0.03) 0.33 (0.03) 0.35 (0.02) 0.38 (0.03) 0.43 (0.05)
19–30 0.18 (0.03) 0.18 (0.02) 0.20 (0.02) 0.23 (0.03) 0.32 (0.07) 0.31 (0.04) 0.31 (0.02) 0.31 (0.02) 0.32 (0.02) 0.35 (0.05)
31–50 0.19 (0.02)* 0.19 (0.01)* 0.20 (0.01)* 0.26 (0.02)* 0.44 (0.05) 0.32 (0.02)* 0.32 (0.01)* 0.34 (0.01)* 0.37 ((0.01)* 0.47 (0.04)
51–70 0.15 (0.02)* 0.16 (0.01)* 0.19 (0.01)* 0.28 (0.02)* 0.49 (0.05) 0.28 (0.01)* 0.30 (0.01)* 0.32 (0.01)* 0.36 (0.02)* 0.42 (0.03)
71þ 0.14 (0.01)* 0.15 (0.01)* 0.20 (0.02)* 0.31 (0.03)* 0.50 (0.06) 0.24 (0.01)* 0.27 (0.01)* 0.30 (0.02)* 0.35 (0.02) 0.41 (0.04)

Abbreviation: UL, tolerable upper intake levels *indicates that the value is significantly different from quintile 5 (Q5) at Po0.05. ‘—’ indicates that the model
failed to converge. aThe values at the 90th percentile of the usual nutrient intake distributions as a ratio of the UL indicate the proximity of the upper tails of
the distributions of usual intake to the UL. For example, a value of 0.75 for a given quintile indicates that 10% of the quintile was within 25% of the UL.
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Prior studies have not assessed the risk in relation to individuals’
propensity to consume vFF, but have rather estimated the
contribution of vFF to total nutrient exposure based on
observed intakes over a few days.24,25 Characterizing people as
high or low vFF consumers based on only a few days of intake
may result in misclassification that masks the elevated risk
associated with higher probability of vFF consumption.

Our results are sensitive to estimation errors in total nutrient
exposure. Fortified foods were not consistently differentiated from
unfortified versions in this survey, and the extent to which fortified
food consumption was probed for during the data collection is
unclear.28 This estimation error, together with the likely
underreporting of intakes for some individuals,29,30 means that
we have underestimated the upper tails of the usual intake
distributions and the extent to which fortified food consumers
have intakes above the ULs. In addition, estimating the upper tails
of the distributions is challenging due to data scarcity, which may
explain the significant effects observed only when we examined
intakes approaching the UL (that is, the 90th percentile) and not
when we examined prevalences exceeding the UL.

The FNDDS database in most cases does not differentiate
between added and naturally occurring nutrients, and food
code descriptions are often insufficient to identify fortificants.
We therefore cannot directly attribute intakes above the UL to
voluntary fortification. The observed intakes of retinol, folic acid
and zinc in excess of the UL among children are likely, in part, a
product of voluntary fortification as retinol and folic acid are not
naturally occurring in breakfast cereals and beverages, and zinc is
commonly added to breakfast cereals.10 This inference is less
readily drawn for our findings with respect to excessive copper
and selenium intakes, as neither nutrient is commonly added
to food.31,32

We did not consider supplement intakes in this analysis but
supplement use has been shown to increase the risk of excess.4,33

The observed positive associations between probability of
consuming fortified foods and likelihood of supplement
consumption among several groups suggest that the true risk of
intakes above the UL among those with high exposure to vFF is
even greater than our estimates suggest. Our findings highlight
the increasing risk of nutrient intakes in excess of the UL with
greater exposure to vFF, a risk that can only be compounded by
dietary supplement use.

These results support the Institute of Medicine’s recommenda-
tion that voluntary fortification not be employed without a public
health rationale.1 It could be argued that the risk of vFF
consumption leading to intakes above the UL needs to be
weighed against the benefits of reducing inadequate nutrient
intakes in the population. However, it is important to recognize
that decisions about nutrient additions in vFF rest with food
manufacturers, not public health officials. Although some of the
nutrients for which we observed intakes above the UL in
conjunction with vFF consumption have a substantial prevalence
of inadequacy (for example, calcium), others (for example, zinc)
do not.4 More research is needed to determine the health
implications of usual intakes that approach or exceed the UL, but
in the interim, it would seem prudent to consider restricting the
addition of micronutrients to cases in which there are
demonstrable health benefits. As voluntary food fortification
continues to expand, more careful scrutiny and monitoring of
this practice is needed.
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